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SUMMARY

Recent emphasis on reduction of design cycle time and cost in the design of commercial aircraft (P.E.
Rubbert, ‘CFD and the changing world of airplane design’, AIAA Wright Brothers Lecture, September,
1994) has sparked a renewed interest in design optimization in aerodynamics, structures and aeroelastics.
In this paper, recent developments in the use of design optimization in aerodynamics using the
TRANAIR code are considered. Globalization techniques and the extension of the methodology to
multipoint design will be discussed. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Today, commercial aircraft are routinely designed using a combination of computational fluid
dynamics (CFD) and wind tunnel testing. One possible design method is the use of repetitive
analysis and/or wind tunnel testing to develop engineering understanding. An alternative is the
inverse design method, in which the designer specifies desirable flow features, in most cases the
pressure distribution on the wing surface, and asks the CFD code to compute the geometry
that produces such flow features. The many cut-and-try iteration loops of repetitive analysis
are now replaced by a systematic inverse CFD procedure.

There are, however, still a number of drawbacks of the inverse design approach. The first
one is the difficulty of finding ‘good’ pressure distributions for highly three-dimensional flows.
The second difficulty is the consideration of off-design performance. The inverse design
method is inherently a single-point design process, although the designer usually has some
knowledge of what pressure architecture of an airfoil at the cruise condition will likely give
reasonable off-design characteristics.

These difficulties lead to the desire to develop an optimization methodology for aerody-
namic design. A well-formulated optimization method may help to achieve quickly a good
compromise between aerodynamic or cost objectives and the constraints imposed on the
geometry by other disciplines, such as manufacturing and structures. It will also allow multiple
critical flight conditions to be considered so that iteration with off-design considerations can
be eliminated, as has been demonstrated in 2D by Drela [1]. Over the past few years, the
authors have begun to develop an optimization capability in the TRANAIR code [2–5]. This
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code is a two- and three-dimensional full potential flow code with directly coupled strip
boundary layer, capable of handling complex geometries through solution adaptive local grid
refinement.

In Section 2, an overview of the optimization methodology in TRANAIR is given. In
Section 3, various globalization strategies that have been applied will be described and their
effectiveness will be demonstrated with some examples. Section 4 describes how the optimiza-
tion method is extended to multipoint design and shows how it can be used for airfoil design.

2. TRANAIR OPTIMIZATION METHODOLOGY

There are several aspects of the TRANAIR analysis algorithm that lend themselves to design
optimization. These are the use of Newton’s method, the use of solution adaptive grid
refinement, the general geometry capability, and the ability to use transpiration boundary
conditions to model changes in surface shape. One of the consequences of the use of Newton’s
method is the experience with inexactness of derivatives, which carries over almost directly to
the optimization case. In addition, the use of a sensitivity formulation enables the implicit and
cost effective generation of partial second-order information.

In a solution adaptive grid method for solving partial differential equations, such as the one
implemented at TRANAIR, there is a series of grids, l=1, 2, . . . , NG. On each grid, the flow
problem is discretized and solved. The design and optimization capability have been combined
with this solution adaptive grid capability by defining a discrete simplified optimization
problem on each grid in such a way that the entire process can converge to the solution of the
continuous optimal control problem. This is described in detail in [4,5]. For simplicity, in the
following description of optimization methods, only the discrete version of the problem that is
posed on a given grid is dealt with.

The discretized non-linear state (flow) equations will be denoted by

F(X, u)= (F1(X, u), F2(X, u), . . . , Fn(X, u))T=0,

where the state variables X= (X1, X2, . . . , Xn)T consist of both the inviscid flow variables and
the boundary layer variables. The design parameters u= (u1, u2, . . . , um)T could represent the
geometry shape or flow quantities, such as angle of attack or free-stream Mach number.
Included in F(X, u) is an inhomogeneous Neumann boundary condition T(X, u), used to
approximate the effect of boundary motion [4]. One simple form of this condition is
T(X, u)=Wb ·dn̂, where Wb is the mass flux through the boundary, and dn̂ is the total change
in unit normal due to the design parameter u.

Now, consider the problem of minimizing a scalar objective function I(X, u) subject to the
constraint that F(X, u)=0. It is assumed that the Jacobian matrix (Fi/(Xk is invertible for the
values of u of interest and the notation that

(I/(X= ((I/(X1, (I/(X2, . . . , (I/(Xn)

is a row vector is used.
The necessary conditions for optimality are often formulated by introducing the Lagrange

multipliers l as independent variables [6]. The Lagrangian is then defined by

L(X, u, l)=I(X, u)+lTF(X, u).

At an optimum, the Lagrange multiplier li is the derivative of the value of I with respect to
changes in the value of the constraint Fi, i.e. li=dI/dFi. Necessary conditions for an optimum
are that the gradient of L be zero.
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In cases where (F/(X is invertible for the values of u of interest, the Lagrange multiplier can
be eliminated from the formulation. This is done by first solving Equation (2) for l. This yields
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If this is substituted into Equation (1), the following equivalent necessary conditions for
optimality are obtained:
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The quantity dI/du defined above is often called the reduced gradient. The necessary
conditions can now be formulated either in terms of solving an adjoint problem (4) for l, or
directly by solving the linearized state equations using multiple right-hand-sides to compute
each column of the n×m matrix
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The latter approach is the one implemented in the design and optimization version of
TRANAIR. A transpiration boundary condition (an inhomogeneous Neumann boundary
condition) is used to approximate (F/(u as described in [4].

Now, it is shown how to derive a reduced space form of the classical Lagrange–Newton
method [7]. Applying Newton’s method to Equations (1)–(3), the following equations for the
updates du to u, dX to X, and dl to l are arrived at:
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where l. =l+dl and the subscript notation for partial derivatives has been used, e.g.
FXX=(2F/(Xj (Xl. The block entries above can be readily expanded as Lu,u=Iu,u+lTFu,u,
Lu,X=Iu,X+lTFu,X, etc. The variables l. can be eliminated from this system, resulting in the
following equivalent system:

Hdu= −GT, (8)

Fudu+FXdX= −F(X, u), (9)

where

H=Iuu−QTIXu−IuXQ+QTIXXQ+lTFuu−QTlTFXu−lTFuXQ+QTlTFXXQ (10)

and

GT= (Iu−IXFX
−1Fu)T− (IuX+lTFuX)FX

−1F−Fu
TFX

−T(IXX+lTFXX)FX
−1F. (11)
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The matrix H=d2I/duj dui is often called the reduced Hessian and G is a modified form of the
reduced gradient. The first term in the formula for GT is the transpose of the reduced gradient
given by Equation (5) above. The last two terms can be neglected if FX

−1F, i.e. the Newton step
for the state equations, is small. If H is positive definite, solving Equation (8) is equivalent to
minimizing the quadratic functional:

QI(du)=
1
2

(du)TH(du)+G(du)+I0. (12)

It is possible to impose any inequality or equality constraints involving either X and/or u at
this stage.

If superscripts are used to denote the grid number, the optimization method in TRANAIR
can be described as follows:

1. Given the initial design variables u1 and an initial guess for the state variables X. 0.
2. For each grid l=1, 2, . . . , NG :

(a) Discretize the state equations (the flow equations) on grid l.
(b) Solve this discrete problem Fl(Xl, ul)=0 approximately for Xl using initial values

derived from X. l−1.
(c) Calculate an approximation to the reduced gradient vector G and the reduced Hessian

matrix H and solve the quadratic program given by Equation (12) for dul. Constraints
on either flow or design variables can be applied at this stage.

(d) Update the design variables, ul+1=ul+e ldul where e l is determined by a globaliza-
tion strategy. Update the flow variables by solving Equation (9) assuming Fl=0, i.e.
X. l=Xl+e l(FX

l )−1Fu
l dul. The globalization procedures discussed in Section 3 may give

different values of X. l.
(e) Estimate the discretization error using X. l.
(f) Use the error estimate to determine grid l+1 and go to (a) above.

3. Reloft the geometry using the final value of the design parameters uNG. Determine the new
values of the design variables u. If the final transpiration TNG(XNG, uNG) is not sufficiently
small or if the design space was changed, go to step 1 above.

The outer loop (step 3) enables convergence to the solution of the continuous design
problem with some level of artificial dissipation. This outer loop involves relofting the
geometry (actually moving the surface), doing a surface discretization (called paneling), and
then redesigning until the transpiration error becomes insignificant. In the authors experience,
convergence of this outer loop has taken at most two relofts of the geometry. Step 2 above is
an inexact Newton method [8] for solving the necessary conditions for optimality and allows
the incorporation of solution adaptivity into the optimization process. Below, the various
approximations used for the reduced gradient and Hessian are described. In this context,
approximations to l and Q can be substituted in the formulas derived above, with only
marginal effects on global convergence [5].

Step 2(b) is not strictly needed for the solution of Equations (8) and (9) but does enable
dropping the F(X, u) from the right-hand-side from Equation (9) and dropping the last two
terms in Equation (11) for G. For highly non-linear flow regimes, this step is often necessary
to prevent divergence as discussed in the next section. Step 2(c) above requires linearization of
any flow or design constraints, c(X, u). Assuming that the sensitivities (Xi/(uj are known, this
is done using the reduced gradient formula given in the first part of Equation (5):
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Approximate Hessian information can be introduced in several ways. In the case of a
least-squares objective function, the normal matrix involves only the sensitivities. Using this
matrix to approximate the Hessian gives rise to a linear least-squares problem. This method
is called the Gauss–Newton method and details are given in [4,7]. The resulting least-
squares problem is currently solved with the package LSSOL [9]. In the case of a non-least-
squares objective function, the quadratic programming approach suggested above is not yet
fully implemented. Instead, an approximate optimization problem is solved that assumes a
linearized flow velocity 6� . It is assumed that I depends on the flow only through 6� and the
function J given by

J(u)=I
�
6� 0+ (u−u0)

(6�
(u
�

, (14)

where (6� /(u is computed using Equation (13), is minimized. The gradient of J is the same
as the gradient of I. However, the Hessian of J is given by the first four terms of Equation
(10). The minimization is currently accomplished by using the optimization package NP-
SOL [10]. Since J is inexpensive to evaluate, gradients can be computed by finite differ-
ences. The result is that second-order information corresponding to the first four terms of
Equation (10) is generated implicitly in a BFGS update strategy, for which the evaluations
are very inexpensive allowing a large number of iterations for each subproblem.

The storage for the sensitivities might seem at first glance to be prohibitive for large
numbers of design variables. However, almost all aerodynamic optimization problems in-
volve objective functions and constraints that only depend on the velocity at points on the
surface of the configuration. Advantage is taken of this fact by storing (6� /(u only for these
surface points. The computational cost of the sensitivities can be somewhat ameliorated by
using parallelism and by the use of block GMRES [11].

Now the adjoint formulation [12] for optimal control is discussed and compared with the
sensitivity method. The two methods arise from the observation that the matrix product
given in Equation (5) for the reduced gradient can be computed in two ways. If the
multipliers are computed first, the method is usually referred to as an adjoint method.
Partial second-order information is easily available in the sensitivity method in the form of
the first four terms of Equation (10). In the adjoint method, no second-order information is
immediately available and additional adjoint solvers are required. In fact, if a full second-
order method is desired, the apparent cost advantage of the adjoint method disappears.
Further, with the sensitivity method, linearizations of all constraints are available immedi-
ately. Good convergence has been observed for this optimal control method; probably due
to the implicit use of the second-order information available in a sensitivity method. As
discussed above, this information is generated implicitly in a BFGS update strategy, for
which the evaluations are very inexpensive, allowing a large number of iterations for each
subproblem.

TRANAIR design usually converges to a reasonable level of the reduced gradient in five
to ten optimization subproblems, each of which is less costly than a single analysis. Because
of the efficient generation of sensitivities, the total CPU cost for up to 400 design variables
in three space dimensions is usually less than the cost of ten analyses. This is at least two
orders of magnitude less than comparable black box methods.
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3. GLOBALIZATION

All Newton-based methods either for analysis or optimization require some kind of globaliza-
tion method to prevent divergence in the case of a poor initial approximation to the solution.
There is a plethora of such methods in the literature; many of these methods are classical, such
as the Levenberg–Marquardt method. In the current optimization method, step size control is
sometimes achieved through user-specified constraints that bound the change in some aerody-
namic quantity. In design, as in analysis, changes in local Mach number have proven to be
effective. There is some reason based on experience in analysis cases to believe that conver-
gence would be enhanced by some type of a more automatic step size control for the step in
the design variables once the direction is determined by solving the optimization subproblem.

Recently, several options have been implemented in TRANAIR to choose the step size in
the design variables. These options involve two levels of inexactness and are described below.

Line search method 1

Choose e l to minimize I(X. l, ul+e ldul)+FM, where FM is a merit function and where X. l is
determined by solving to some level of accuracy, the state equation F(X. l, ul+e ldul)=0. In
this case, Xl+1=X. l can be set and step 2(b) can be skipped in the overall method given in
the previous section.

This modified line search maintains the satisfaction of the state equations to some level of
accuracy for each change in the design variables considered. A minor variation is possible by
partitioning the state equations into two subsets F1 and F2 and the state variables into
corresponding subsets X1 and X2 such that given X2, one can solve F1 for X1. Then one could
apply non-linear elimination to F1, resulting in a somewhat modified line search. In the current
case, F1 is the boundary layer equations and X1 the boundary layer variables, while F2 are the
inviscid equations and X2 the inviscid variables [1,3].

Line search method 2

Choose e l to minimize I(X. 1
l , X2

1+e ldX2
1, ul+e ldul)+FM, where X. 1

l is determining by
solving to some level of accuracy, the state equation F1(X. 1

l , X2
l +e ldX2

l , ul+e ldul)=0. Set
X1

l+1=X. 1
l , X2

l+1=X2
l +e ldX2

1 and ul+1=ul+e ldul.

There are many popular choices for the merit function FM, which is designed to take into
account constraint violations [7,13]. Line search method 2 maintains feasibility only for F1. As
discussed below, there are ‘inexact’ versions of both line search methods that are probably
more efficient in practice.

One of the motivations for the introduction of these globalization methods was the
possibility that a design step could result in a transpiration on the next grid for which the
boundary layer non-linear solution process would not converge. This did in fact happen in
several cases and had to be mitigated by user-specified constraints. In this section, the results
of applying these methods to two non-linear least-squares problems are discussed. The first is
an inviscid pressure matching case and the second is a similar case in viscous flow.

The first test case is a pressure matching case involving a target pressure distribution
obtained by analyzing an airfoil section similar to the ONERA M6 section. The initial airfoil
was the NACA 0012. The flight conditions were M�=0.75 and a=1.0. The objective
function is
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I=
1
2
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q

k=1

Wk [(cp)k− (ĉp)k ]2,

with the weights Wk taken to be the surface point in question and (cp)k are pressure
coefficients. Figure 1 shows the initial geometry, target geometry and final geometry resulting
from the design and also the initial pressure distribution, target pressure distribution and final
pressure distribution on the designed airfoil. The difference between the target and the
designed airfoil is due to small errors in the transpiration approximation.

In this case, a large number of grids was used to examine asymptotic convergence issues. For
this case, the grid was frozen after grid 10. The case was run with no globalization, with line
search method 1, and with line search method 2. In the case of no step size control, there is
a dramatic tendency to ‘overshoot’ the actual solution and great difficulty is encountered in
converging the analysis on grid 8 due to the large change introduced by the undamped
optimization step. The code eventually stops because of convergence stagnation on this grid.
Line search method 2 is rather simple since there is no boundary layer in this case. The step
size selection is based on a linear estimate of the change in local Mach number with a value
greater than 0.4 being considered an error. This results in step sizes that are initially too
conservative. Once the shock wave becomes established, it takes many grids to move it to the
correct position. Line search method 1 is the most effective, finding the solution well before the
grid is frozen. This is due to the better estimation of the true solution on the next grid, taking
into account the optimization step.

Another globalization strategy that can prove effective is to impose constraints on the
optimization subproblem that restrict quantities such as changes in local Mach number. Such
constraints are effective but require user knowledge of the problem and are less flexible than
the globalization strategies discussed in this section. For example, a user-imposed constraint on
the change in local Mach of 0.4 would result in a convergence history similar to that reported
for line search method 2 given above.

Figure 1. Geometry and solution for design least-squares case.
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Figure 2. Convergence of design least-squares case with various globalization options.

Figure 2 shows the convergence history for this case. Both the objective function and the
estimated projected gradient are shown as functions of the grid number. There are two values
of the objective shown for each grid. The first results from the analysis of a fixed transpiration
due to the initial values of the design variables on that grid. The second value is the best
estimate of the value after the updating of the design and flow variables on that grid. Severe
oscillation indicates that the estimated values of the objective are seriously inaccurate. This can
be due to a design step that is beyond the range of validity of the model of the objective used
in the optimization subproblem. On early grids, it can result from grid-to-grid changes in the
solution due to solution adaptive grid refinement.

A second test case illustrates the globalization methods as applied to a viscous flow case
formulated using the same airfoils as before. In this case, the effect of line search method 1 is
more significant. With no step size control, lack of convergence occurs on grid 5. The same is
true of line search method 2, even though the step sizes are reduced considerably. With line
search method 1, the design converges. The convergence histories are given in Figure 3.

4. MULTIPOINT DESIGN

The TRANAIR design and optimization method described in Section 2 has been extended to
optimization at multiple flow conditions. Multipoint design is desirable for at least two
reasons. First, it is obvious that a single-point design has no control of the performance at
other conditions (except through constraints that may be ad hoc or difficult to formulate) and
in practice, it often leads to poor off-design performance. Second, there is hope that multipoint
design will be more stable than single-point design; for example, in minimizing drag for an
airfoil, there are many shock-free single-point airfoil designs.
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If the objective function is drag, then the goal is to minimize the drag at several different
operating conditions. Currently, the objective is taken to be a weighted linear combination of
the objectives from the different flow conditions. Thus, the optimization problem is formulated
as minimize � WipIip such that Fip(Xip, u)=0 and cip(Xip, u)=0 for ip=1, . . . , np, where np is
the number of flow conditions in the multipoint design. Here, Fip=0 represents solving the
flow equations for the ipth condition and cip=0 represents the geometry and flow constraints
imposed on the ipth condition.

The algorithm for multipoint design is very similar to that described in Section 2. Step 1 is
to give each condition the initial geometry (i.e. values for the design variables). Steps 2(a) and
(b) can proceed in parallel and are completely independent. In fact, different computers have
been used to work on different conditions. Steps 2(c) and (d) require an optimization that must
get input from each of the flow conditions. The objective function is assembled, and the
constraint and sensitivity information combined to form one large optimization problem. The
resulting updates to the design variables are passed back to each of the flow conditions and
steps 2(e) and (f) can again proceed independently for each flow condition.

Below, the results of applying single-point and multipoint optimizations to the problem of
minimizing drag for a 2D airfoil are shown. The drag for these 2D airfoils is computed by
summing the wave drag and the profile drag. The wave drag is calculated by identifying the
shock surface, and integrating over the surface using the shock jump conditions with the
normal Mach number obtained from the upstream head of the shock. The profile drag is
computed by using the Squire–Young formula.

The optimization problem is to minimize the drag on the RAE 2822 airfoil. The ‘cruise’
condition is taken to be free-stream Mach number, M�=0.725, Reynolds number, Re=6.5×
106, coefficient of lift, CL=0.73. Also computed are solutions for other values of M� with the
same CL and Re. Figure 4 shows the resulting drag rise curve for this airfoil.

Figure 3. Convergence of design least-squares case with various globalization options for viscous design case.
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Figure 4. Drag rise curves for RAE 2822 airfoil and airfoils designed without curvature constraint.

For all the designs, the geometry was only permitted to change in camber with thickness
held fixed. The airfoil is modified by a spline interpolation of changes in camber parameterized
by variables defined at points every 10% of the chord of the airfoil. In addition, the angle of
attack was allowed to vary in order to match the specified lift. The adaptive gridding strategies
used for analysis and design were similar. Starting from a very coarse initial grid, the grid was
adaptively refined eight times to a total of about 10000 grid boxes. For the design runs, an
additional two steps with no change in grid were made to allow the optimization two
additional steps in which to fine tune the changes in geometry. In addition to the lift
constraint, the change in transpiration from grid to grid was constrained to be less than 0.02
to discourage the optimizer from taking steps that were too large, especially when the grid was
coarse. This is needed because the globalization methods described above are not yet
implemented in the multipoint capability. Also, the kinematic shape parameter Hk was
constrained to ensure attached flow in the turbulent flow region. After the new geometry is
generated, it was then re-analyzed to produce the curve shown in Figure 4. It is noted that in
all cases, the design predictions of drag were in excellent agreement with those computed in the
re-analysis, i.e. the transpiration error was very small. In the case of single-point design, it can
be seen that while the drag is significantly reduced at the design point, the performance is
much worse at the lower Mach number conditions. Next, a two-point calculation was made
with M�=0.700 and M�=0.725 and the objective function chosen to minimize the sum of
the two drags. This improves the performance around M�=0.700, but between the design
points and lower than M�=0.700, the performance is still poor. Next, results of a five-point
design with M�=0.650, 0.700, 0.710, 0.720, 0.725 are shown. Again, the conditions were
equally weighted. In this study, the choice of weights has not been investigated. Now, Figure
4 shows a monotonic drag rise curve with significantly improved cruise performance. Figure 5
shows the original (RAE 2822) airfoil and the five-point design airfoil (labeled without
curvature constraints).
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Figure 5. RAE 2822 airfoil and airfoils designed with and without curvature constraint.

The designed airfoil shows quite large curvature near the back-end and also has a small
amount of reverse curvature on the upper surface. It is suspected that the large curvature may
be caused by the optimizer trying to exploit a deficiency in the boundary layer code.

In an effort to remedy these problems, the designs were repeated with pointwise curvature
constraints applied. The upper surface was forced to have the same sign of curvature

Figure 6. Drag rise curves for RAE 2822 airfoil and airfoils designed with curvature constraint.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 205–216 (1999)
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everywhere and the curvature was bounded in the aft 50% of chord. Figure 6 shows the drag
rise curves of the resulting designs.

Once again the one- and two-point designs exhibit poor off-design behavior, although in this
case, the curvature constraints have reduced the movement so the behavior is not as bad as
when unconstrained. Again, the five-point design produces a good overall design. In this case,
the drag rise curve now resembles the original RAE 2822 for low Mach numbers, but has
significantly reduced drag for higher Mach numbers. Note in Figure 5 that the constrained
design produces an airfoil that has a much more acceptable shape. In this study the thickness
distribution was held fixed. One could expect further improvements by, for example, allowing
thickness to change but constraining the volume of the airfoil.

5. SUMMARY

The authors have improved the single-point design and optimization methodology in
TRANAIR to include a range of globalization strategies and extended it to a multipoint design
capability. Both enhancements improve the robustness and usefulness of the capability. They
have offered a rationale for preferring the sensitivity method to the adjoint method by showing
that some second-order information is naturally and inexpensively available in the sensitivity
method.
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